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1. I N T R O D U C T I O N  

I learned from Prof. N. van Kampen a great deal of fundamental physics 
and ways of thinking including criticism during my stay in Utrecht from 
1970 to 1971. In particular, I have been influenced greatly concerning the 
importance of fluctuation in nonequilibrium systems. (1 s> Fluctuations are 
important in the formation of macroscopic order from the unstable point, 
as I clarified in scaling theory. (6 8> In van Kampen's s (1) 
Gaussian fluctuations are mainly taken into account as corrections to the 
deterministic path of the relevant system. Nonlinear fluctuations play an 
essential role in critical phenomena. Larger fluctuations give greater 
contributions to the fractional singularities of physical quantities near the 
critical point. Such a situation can be treated in ordinary phase transitions 
rather well by Wilson's renormalization group (RG) method ~ through 
recursion formulas. Each approximate RG gives an approximate set of 
fractional values of critical exponents. It is not clear whether such an 
approximate series of RG converges. In fact, it is an asymptotic expansion 
in many situations, such as the t-expansion. 
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On the other hand, the mean-field or effective-field approximations 
have been used very frequently as a starting point of theories of phase 
transitions. No fluctuation is included in the Weiss mean-field theory. (~~ 
Bethe (H) took fluctuations into account to study phase transitions. His 
method is a cluster effective-field theory. Any physical quantity x may be 
separated into the following two parts: 

x=y+Ax (1) 

as in van Kampen's Q-expansion, where y denotes the average ( x )  and Ax 
the remaining fluctuating part, namely ( A x ) = 0 .  In order to study the 
fluctuation ((Ax) 2) correctly, we have to take into account as many 
configurations as possible, because it expresses the deviation of possible 
configuration of x from the average ( x ) .  For this purpose, it is very 
convenient to consider clusters and to investigate all the configurations of 
the relevant cluster in a statistical mechanical way. Larger fluctuations can 
be included in larger clusters systematically. This leads to Fisher's finite-size 
scaling law. (~2'~3) This scaling law is closely related to the Fisher-Kadanoff 
scaling law (~4'15) on the correlation function C(R), 

A 
- -  e ~R ( 2 )  C(R) - Ra_2+" 

for an infinite system, but the former is more microscopic and fundamental 
in the sense that the latter can be derived from the former as the limit of 
infinite cluster size L. That is, this is a crossover phenomenon from a finite 
analytic expression to a singular behavior (2). It should be noted here that 
this crossover phenomenon occurs for a fairly large value of the cluster size 
L, as is well known. (14"15) 

Now there arises the question whether it is possible to find a new 
scheme to make use of a crossover from a classical singular behavior to a 
fractional one which occurs for a rather small value of the cluster size L. 
This question has been answered (16) affirmatively by the theory of the 
coherent-anomaly method (16 32) (the CAM theory). This is based on the 
observation (a6) of the occurrence of a very effective crossover from classical 
to fractional behaviors in generalized cluster-mean-field approximations. It 
is quite remarkable that nonclassical exponents can be estimated even from 
the combination (16) of the Weiss and Bethe approximations, and more 
precisely by combining (24) these two approximations with the Kramers- 
Wannier-Kikuchi approximation/33'34) That is, even the analysis of very 
small clusters can predict rather reasonable fractional critical exponents. 
This shows that the convergence of the CAM is extremely rapid, as'is seen 
more explicitly from many other applications (17 32) of the CAM theory. 
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From this new point of view, to construct mean-field-type 
approximations is quite substantial even to study nonclassical critical 
behaviors. Then is it possible to find a mean-field approximation for any 
kind of phase transition? This is answered affirmatively by introducing the 
super-effective-field theory. (35'36) 

2. BASIC IDEA OF THE SUPER-EFFECTIVE-F IELD THEORY 

The basic idea of this new theory is to introduce a generalized effective 
field, which is independent of decoupled interactions used in the ordinary 
mean-field approximations. Consider an arbitrary finite cluster whose 
Hamiltonian is written as ~?r Here I introduce a super-effective field A k 
conjugate to a possible local order parameter Qk at the site k as 

= ~ j -  ~ A , ~ ,  (3) 
k ~ 8..c2 

where (~k = 8okQk and 8 o denotes the "modular factor" to take into account 
the (hidden) symmetry of the system. The local operator Q~ is defined by 
the sum of products of some local operators, whose support is assumed to 
be Dk. The symbol 8~2 denotes the boundary region of the cluster ~2, say 
8s = D 1 + D2 + ..- + D~, as shown in Fig. 1. The super-effective-fields are 
determined by the self-consistency condition that 

(4) ( Q o )  = ( O k )  for all k 

Fig. 1. A super-effective-field cluster 135,361 in which each domain/)1 is the support of the local 
order parameter Q j, 
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As far as the linear terms in {Ak) are concerned, equations (4) are 
expressed in terms of Kubo's canonical correlation functions (Qj; Qk)ol 
defined by 

= (QjQ~(ih)~)) d2 (5) 

where ( . . . ) d  is the average for the cluster Hamiltonian . ~  and 

Qk(z) = ei~~ (6) 

Thus, using the canonical correlation functions (5), we can obtain the 
critical point Tc for the phase transition characterized by the possible order 
parameter Q = ~ j  Qi' 

Furthermore, whether this choice of possible order parameters is 
correct or not can be checked by applying the CAM to a systematic series 
of super-effective-field approximations and by studying the coherent 
anomaly. 

This super-effective-field theory has already been applied (35'36) to chiral 
phase transitions (37-42~ and spin glasses.(43 53) 

At a glance, the above super-effective-field theory looks like a simple 
extension of the ordinary effective-field theory of phase transitions to more 
complicated cases such as topological orders. It is, however, much more 
profound in the sense that the relevant long-range order can be formed 
through the super-effective-field term virtually introduced in (3) and that 
this virtual term is not directly related to the original Hamiltonian but it 
expresses a hidden symmetry of the system. One might consider, instead, 
an effective Hamiltonian of the form 

~ =  -Je~ ~ QiQj (7) 
(0) 

where the effective interaction strength J ~  is estimated perturbationally 
from the original Hamiltonian, but this is a weak coupling theory and 
quite phenomenological. It is not useful to estimate the real critical point of 
the original system correctly. On the other hand, the present super- 
effective-field theory is a strong coupling theory and consequently it is very 
powerful in investigating the real phase transition of the relevant system, 
although calculations in this scheme are rather complicated, as is seen from 
some explicit applications ~36) to topological phase transitions. 

3. BASIC S C H E M E  OF THE C O H E R E N T - A N O M A L Y  
M E T H O D  ( C A M )  

As briefly discussed in the Introduction, the basic idea of the CAM is 
to note the coherent anomaly that the critical coefficients of the classical 
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singularities of the relevant response functions become anomalously large 
(or small) as the degree of approximation increases. (16) These coherent 
anomalies yield the true critical singularities of the relevant physical quan- 
tities. Thus, systematic cluster mean-field approximations are extremely 
useful even from the modern viewpoint of critical phenomena. 

Therefore the basic procedure of the coherent-anomaly method is to 
construct systematically self-consistent mean-field approximations for each 
phenomenon and to extract a common feature inherent among them by 
making an analytic continuation of the degree of approximation. It is quite 
remarkable that such a common feature on intrinsic critical singularities 
appears in the coefficients of the classical singularities obtained in the 
generalized systematic mean-field (or effective-field) approximations. Until 
the CAM theory was proposed, no one had paid attention to the amplitude 
of the classical singularity, for it had been believed to be irrelevant to the 
true criticality. 

In order to explain how the true criticality is estimated from these 
coherent anomalies, I discuss here a simple example of the magnetic 
susceptibility Zo(T) of ferromagnets, which is expected to show the 
following fractional singularity: 

1 
Zo(T) (8) 

( T -  T~*) ~ 

near the true critical point T* with the fractional critical exponent 7. As is 
well known, even generalized mean-field approximations yield the 
Curie-Weiss law 

�9 T -  T C Zo(T ) ~_ 2(To), e = -  (9) 
~rc 

near each mean-field critical point To. However, the mean-field critical 
coefficient )~(Tc) becomes anomalously large (1622) as the degree of 
approximation increases, namely 

)~(Tc) ~ ~ as Tc --* T~* (10) 

Thus, we may assume (16 22) that 

L ~6(T~)-~ (11) 
f~(T~) _ ( T o -  T*) ~ 

near Tc= T*, namely, for 6(Tc)= (Tc-  T*)/T* ~ 1. This coherent- 
anomaly exponent q/ can be easily estimated from mean-field critical 
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data on )~(Tc) as a function of Tc obtained in cluster-mean-field 
approximations ~ or obtained by high-temperature expansions. (26'27~ 

More explicitly, we can estimate ~, through the formula 

[z(T~'))~ /' (6T~2~'~ (12) 
O=l~ ~ ~ } / ' ~  \c~T!l) j 

when the true critical point T~* is known. Here I have used the notation 

6T~S'= T~/)- T * (13) 

When the true critical point To* is unknown, we need at least three 
mean-field-type approximations to estimate the three parameters T*, ~b, 
and fz" When more than three approximations are obtained, the least 
squares fitting can be used to estimate the above three parameters. The 
nonclassical critical exponent 7 can be estimated through the 
coherent-anomaly relation (16'~7) 

7 = 1 + 0  (14) 

This relation is derived in three different ways, (16'17) through (1)the finite- 
degree-of-approximation scaling, (2)the envelope theory, and (3)the 
scaling law. Thus, the intrinsic critical fluctuation can be studied through 
the CAM. If we specify a series of cluster-mean-field approximations, the 
critical point Tc and the critical coefficient 2(To) can be obtained in any 
accuracy. In this sense, the CAM supplies a very precise procedure to study 
the criticality, which corresponds to a precise experimental measurement. 

The above procedure can be extended to any other physical quantities. 

4. P E R T U R B A T I O N A L  EXPANSIONS,  C L U S T E R - M E A N - F I E L D  
A P P R O X I M A T I O N S ,  A N D  C A M  THEORY 

Up to now, the most typical method to study the criticality has been 
to perform the high-temperature expansions, namely perturbational expan- 
sions, and to apply the Pad6 approximation or the ratio method to these 
perturbational expansions. These classical methods are, however, only very 
primitive extrapolation schemes. 

Here I give another interpretation of the high-temperature expansions, 
namely, one can construct generalized mean-field approximations by 
comparing the perturbational expansions of them with the original high- 
temperature expansions. 

For example, the susceptibility •o(T) is generally expanded as 

Zo(T) = (N#2/kB T)(1 + zJ/k B T+ ...) (15) 
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where z denotes the number of nearest neighbors and J is the interaction 
strength of the system. The above high-temperature expansion may be 
interpreted as the expansion of the following Weiss approximation of 
Xo(T): 

z~oW,(r)- N#~ 1 ~ #_~, ! 1 
k~ T 1 -  zJ/kn T J z 

(16) 

where ~ = ( T -  T~)/Tc and T,=zJ/kB. 
If we take into account the next term in (15), it depends on the 

off-diagonal elements of the Hamiltonian. For the Ising model described by 

= - J  Z s,sj;  s j= +1 (17) 
<ij> 

the susceptibility ;(0(T) is expanded as 

N#~ _ 
z o ( T ) = ~ B  T[_I + z x + z ( z - -  1)x 2+ -..] (18) 

where x = tanh(J/k B T). Then it may be interpreted as the expansion of the 
following well-known Bethe approximation of •(oB)(T), 

z(oB)(T)=N#~ l + x  N#~ 1 1 (19) 
k B T l - i z - - - - 1 ) x -  J z - 2 e  

These interpretations are particularly useful from the viewpoint of the 
CAM. In fact, even the critical coefficients of these simple approximations 
show the coherent anomaly, namely the critical coefficient 1 / ( z -  2) in the 
Bethe approximation is much larger than the critical coefficient 1/z in the 
Weiss approximation; the critical point Tf )  defined by 

(20) 

is lower than that of the Weiss approximation, T~W)=zJ/kB. This is 
nothing but the coherent anomaly. 

This suggests the following power-series CAM theory. 

5. POWER-SERIES CAM THEORY 

When the relevant physical quantity Q(x) is given as a power series 

Q(x) =a o + alx  + a2x 2+ ... (21) 
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we make an expansion of the inverse of Q ( x )  in the form 

F ( x )  = 1 / Q ( x )  = bo + b l x  + b2 x2 § " ' "  (22) 

The coefficients {bk} can be easily obtained from {ak}, and consequently 
the zeros of the nth approximation Fn(x )  = bo + bl x + . . .  + b n x  n can also 
be obtained. Thus, we have 

Fn(x )  ~- f f(x, , )e;  e = (xc - x)/xc.  (23) 

where F n ( x , , ) =  0. This critical coefficient F(xc )  shows a coherent anomaly 
of the form 

F(xc )  ~ ( x *  - xc)  ~ (24) 

near the true critical point x*. Then the original physical quantity Q ( x )  
shows the following fractional singularity(Z6): 

Q ( x )  ~ 1 / ( x*  - x)O; q) = 1 + (25) 

For  example, consider the high-temperature expansion of the suscep- 
tibility in the two-dimensional Ising model(16): 

;go(T) = Nla~ (1 + 4x + 12x 2 + 36x 3 + 100x 4 + 276x 5 + 740x 6 

+ 1972x 7 + 5172x 8 + 13,492x 9 + 34,876x 1~ + 89,764x 11 + . . . )  

(26) 

where x = t a n h ( J / k B  T),  and J denotes the strength of the Ising interaction. 
It is easily shown that 

(bl, b2 ..... b2l .... ) 

= ( - 4 ,  4, - 4 ,  12, - 2 0 ,  44, - 8 4 ,  188, -372 ,  788, -1604,  3444, 

- 7204, 15660, - 33316, 72908, - 156596, 344500, 

- 746308, 1651868, - 3607236,..) (27) 

The inverse functions shows a remarkable coherent anomaly (Fig. 2). It is 
shown more explicitly in Fig. 3. (6) From the slope in Fig. 3, we obtain 

~- 0.753 (or 0.748), and consequently 7 -~ 1.753 (or 1.748), which agrees 
very well with the exact value 7 = 1.75. 

Many other applications of this power-series CAM theory will be 
reported elsewhere. (32) 
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Fig. 2. 
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6. C O N T I N U E D - F R A C T I O N  C A M  T H E O R Y  

Continued-fraction expansions may be more efficient (27) than 
power-series expansions in applying the CAM theory. 

For example, the susceptibility go(T) of the two-dimensional lsing 
model is expanded in the following continued fraction: 

N~/kB T 
Zo(X) = 4x  (28)  

1 -  
X 

1 + 2x 2 

1 2X 4 

0.5X 2 
1 4 - - -  

1 + 9.5X 2 

with x = tanh(J/kB T). It looks irregular, but we can find an interesting 
result by applying the CAM theory to the above expression (28), as 
shown (27) in Fig. 4. It should be noted that the degree of approximation 
does not necessarily increase monotonically, but all the critical coefficients 
lie on the straight line, namely, they show a coherent anomaly�9 This is a 
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Fig. 4. Coherent anomaly of the susceptibility of the two-dimensional Ising model based on 

the continued-fraction expansion. IzT) The straight line corresponds to 0 = 3/4. 
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large merit of this continued-fraction-expansion CAM theory compared 
with other methods, such as the Pad6 approximation method. 

Some applications to other systems will be presented elsewhere) 27'32) 

7. PADE A P P R O X I M A N T S  C A M  THEORY 

The power-series and continued-fraction CAM theories are easily 
extended to the Pad6 approximants of the form 

Co -~ C I X -~ . . .  -~- Cm x m  

Pm'n(X)= do+dax + ... +d,,x" (29) 

The coefficients {cj} and {dj} are determined from the power series (21). 
The approximant Po, n corresponds to the inverse F(x) of Q(x). Thus, the 
Pad6 approximant (29) is an extension of (22). Similarly to (23), we may 
have 

em, o ( x ) ~  - xc P~,.(xc) (30) 
X c - -  X 

for appropriate series of the integers m and n, where x = Xm, n satisfying 
1/Pm,,,(Xm, n)=O. The critical coefficient Pm, n(xc) may take the following 
singularity: 

f i  .... (x~.)~- f [ m , n ]  (31) 
(x~* - - x S  

with a coherent-anomaly exponent ~. The coefficient f [m,  n] might 
depend on the choice of the series (m, n). The critical exponent q9 is given 
by (25), just as before. As is already known, (54) it is possible to study 
critical exponents by using only the Pad6 approximation, namely by 
applying Pad6 approximants to the derivative of the logarithm of Q(x) and 
by estimating the coefficient of their poles. It is, however, expected that the 
present method may be more efficient than the original Pad6 method 
because the zeros of the denominators of such Pad6 approximants scatter 
according to the choice of m and n. 

On the other hand, according to the CAM, we introduce the degree of 
approximation by using such zeros and consequently it is possible to 
arrange the critical coefficients or residues of Pad6 approximants according 
to this newly introduced degree of approximation, namely ~i(xc)= 
(x c - x * ) / x * .  This new scheme gives a very rapidly convergent estimate of 
criticality, as will be explicitly applied to many systems elsewhere. (32) 

822/53/1-2-32 
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8. C O R R E L A T I O N - I D E N T I T Y - D E C O U P L I N G  C A M  T H E O R Y  IN 
CLASSICAL S Y S T E M S  

Correlation functions are very fundamental physical quantities in 
statistical physics and useful even in the CAM theory. In particular, the 
following general correlation identity ~55'56) is very useful: 

( fg)  = ( f ( g ) ' )  (32) 

in commutable classical systems. Here f and g are arbitrary classical 
functions which do not contain common variables, and ( g ) '  is the 
canonical average of g over the partial Hamiltonian ~g, which is connected 
to the variables contained in g, namely 

( g ) ' = T r  ge ~g/Tr e -~~ (33) 

where ~ = ~ '  + ~g and ~ '  does not contain the variables in g. The proof 
of (32) is very simple, as follows. (56) Quite analogously to the arguments in 
ref. 55, we have 

( fg )Z=Tr  fge -p~ = T r '  e-~VfTrg ge ~ 
= Yr'[e ~ f  Trg e-'~ ge-/3a~g/Trg e-~g)] 

= Tr' Trg e-r (34) 

with Z =  Tr e x p ( - / ~ ) .  This yields the general correlation identity (32). 
For example, in the Ising model, 

- E  JikS, Sk- .HZ S: (35) 
i,k j 

with S: = + 1, we have the following identity: 

( f (S: ,Sk)=(f(S:) tanh~(~JikSe+l~BH)) (36, 

for an arbitrary function f(S:). This is the so-called Callen identity. (57) If we 
put f(Sj)= 1, then we obtain 

( S~ ) = ( tanh (BJk~ S~ + B#BH) ) (37, 

for Jik = J, where z denotes the number of nearest neighbors. By decoupling 
the right-hand side into tanh(zBJ(Sk)+~BH), we arrive at the 
mean-field equation of state 

rn = tanh(zflJm + ~#B H) 
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for m =  (Sk).  This yields the Weiss mean-field critical point T~W)=zJ/kB 
and the Curie-Weiss law (16). 

If we decouple higher-order correlation identities, then we obtain 
better approximations. Thus, we can derive, in principle, a systematic series 
of mean-field-like approximations. This scheme may be called the 
"correlation-identity-decoupling CAM theory." It will be applied explicitly 
elsewhere. 

9. GREEN'S FUNCTION DECOUPLING C A M  THEORY IN 
Q U A N T U M  S Y S T E M S  

The idea of the correlation-identity-decoupling CAM theory is easily 
extended to quantum systems in which the Green's functions are useful. As 
is well known, there exists a hierarchy of Green's functions in quantum 
many-body systems and systematic decoupling of them may make it 
possible to apply the CAM. This scheme will be applied to frustrated 
quantum spin systems and fermion systems. 

10. S U M M A R Y  A N D  D ISCUSSION 

The combination of the present super-effective-field theory and the 
coherent-anomaly method will give a unified theory of phase transitions. 
They can be applied even to exotic phase transitions such as chiral orders 
and spin glasses. The basic idea of the CAM theory will be extended to the 
Ginzburg Landau-Wilson Hamiltonian, in which the Feynman diagram 
technique is useful. This suggests a new scheme of Feynman-diagram- 
expansion CAM theory. The super-effective-field theory may also be 
applied to the gas-liquid transition and the Alder transition/58) 

An application of the present super-effective-field CAM theory will 
also be applied to the lattice gauge theory, as will be reported elsewhere. 
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